抱歉,您的浏览器无法访问本站
本页面需要浏览器支持(启用)JavaScript
了解详情 >

积分上限函数

当定积分的上限为未知数xx时,原定积分变成一个关于xx的函数,称为积分上限函数

g(x)=axf(t)dt\large g(x)=\int_a^x f(t)dt

F(x)=f(x)F^{'}(x)=f(x),则

g(x)=ddxaxf(t)dt=ddx[F(x)F(a)]=f(x)\large \begin{array}{ll} &g^{'}(x) \\ =&\frac{d}{dx}\int_a^xf(t)dt \\ =&\frac{d}{dx}[F(x)-F(a)] \\ =&f(x) \end{array}

变限积分求导

f(x)f(x)的原函数为F(x)F(x),且g(x)=ϕ(x)φ(x)f(t)dt\large g(x)=\int_{\phi(x)}^{φ(x)}f(t)dt,则

g(x)=ϕ(x)φ(x)f(t)dt=ddx[f(φ(x))f(ϕ(x))]=φ(x)f(φ(x))ϕ(x)f(ϕ(x))\large \begin{array}{ll} g^{'}(x)&=\int_{\phi(x)}^{φ(x)}f(t)dt \\ &=\frac{d}{dx}[f(φ(x))-f(\phi(x))] \\ &=φ^{'}(x)f(φ(x))-\phi^{'}(x)f(\phi(x)) \end{array}

变限积分的无穷小阶数

f(x)f(x)的原函数为F(x)F(x),且g(x)=0Pn(x)Pm(t)dtg(x)=\int_0^{P_n(x)}P_m(t)dt,其中Pk(x)P_k(x)表示最低阶为kk的多项式,而不是一个具体的函数

g(x)g(x)求导,得到

g(x)=ddx0Pn(x)Pm(t)dt=Pn(x)Pm(Pn(x))=Pn1(x)Pmn(x)=Pmn+n1(x)\large \begin{array}{ll} g^{'}(x)&=\frac{d}{dx}\int_0^{P_n(x)}P_m(t)dt \\ &=P_n^{'}(x)\cdot P_m(P_n(x)) \\ &=P_{n-1}(x)\cdot P_{mn}(x) \\ &=P_{mn+n-1}(x) \end{array}

由于求导后阶数减一,因此g(x)g(x)的阶数为 (mn+n)\color{red}(mn+n)

在实际做题时,可以通过等价无穷小或者泰勒展开的方法,将复杂的函数转化成多项式,因此该结论仍然成立,即 (被积函数的阶数+1) × 积分上限的阶数

如下面函数的阶数就是(2+1)×1=3(2 + 1) × 1 = 3

0sinxsint2dt0xt2dt\large \int_0^{\sin x}\sin t^2dt \sim \int_0^x t^2dt

当积分上下限都是函数但不是等价无穷小时,只需要将其看作两个积分上限函数相加即可.如果积分上下限是等价无穷小,那么需要特殊处理

由于上下限两个函数是等价无穷小,因此他们的最低阶数一定都是 Ax^n,即阶数相同,系数也相同,那么我们就可以将上限函数看作下限函数(最低阶为n)与另一个最低阶为k的多项式的和.换个说法,这个最低阶为k的多项式其实就是积分上下限之差,即上限减去下限

g(x)=ddxPn(x)Qn(x)Pm(t)dt=ddxPn(x)Pn(x)+Pk(x)Pm(t)dt,k>n,Qn(x)=Pn(x)+Pk(x)=[Pn(x)+Pk(x)]Pm(Pn(x)+Pk(x))Pn(x)Pm(Pn(x))=[Pn(x)+Pk(x)]Pm(Pn(x))Pn(x)Pm(Pn(x))=Pn(x)Pm(Pn(x))+Pk(x)Pm(Pn(x))Pn(x)Pm(Pn(x))=PkPm(Pn(x))=Pmn+k1(x)\large \begin{array}{ll} g^{'}(x) &=\frac d{dx}\int_{\textcolor{green}{P_n(x)}}^{\textcolor{red}{Q_n(x)}}P_m(t)dt \\\\ &=\frac d{dx}\int_{\textcolor{green}{P_n(x)}}^{\textcolor{red}{P_n(x)+P_k(x)}}P_m(t)dt,\textcolor{red}{k>n,Q_n(x)=P_n(x)+P_k(x)} \\\\ &=\left[\textcolor{red}{P_n^{'}(x)+P_k^{'}(x)}\right]\cdot P_m\left(\textcolor{red}{P_n(x)+P_k(x)}\right)-\textcolor{green}{P_n^{'}(x)}\cdot P_m\left(\textcolor{green}{P_n(x)}\right) \\\\ &=\left[\textcolor{red}{P_n^{'}(x)+P_k^{'}(x)}\right]\cdot P_m\left(\textcolor{red}{P_n(x)}\right)-\textcolor{green}{P_n^{'}(x)}\cdot P_m\left(\textcolor{green}{P_n(x)}\right) \\\\ &=\textcolor{red}{P_n^{'}(x)} \cdot P_m\left(\textcolor{red}{P_n(x)}\right)+\textcolor{red}{P_k^{'}(x)} \cdot P_m\left(\textcolor{red}{P_n(x)}\right)-\textcolor{green}{P_n^{'}(x)} \cdot P_m\left(\textcolor{green}{P_n(x)}\right) \\\\ &=\textcolor{red}{P_k^{'}}\cdot P_m\left(\textcolor{red}{P_n(x)}\right) \\\\ &=P_{mn+k-1}(x) \end{array}

因此g(x)g(x)的阶数是 (mn+k),即 被积函数的阶数 × 积分上(下)限的阶数 + 积分上下限之差的阶数

如下面函数的阶数是1×1+3=41 × 1 + 3 = 4

xsinxsintdtxxx36tdt\large \int_x^{\sin x}\sin tdt \sim \int_x^{x-\frac{x^3}{6}}tdt

评论