抱歉,您的浏览器无法访问本站
本页面需要浏览器支持(启用)JavaScript
了解详情 >

Fourier 变换

基本概念

若函数 f(t)f(t)(,)(-\infty, \infty) 上满足条件:

  1. f(t)f(t) 在任一有限区间满足 DirichletDirichlet 条件.
  2. f(t)f(t)(,)(-\infty, \infty) 上绝对可积.

则:

F(ω)=+f(t)ejωtdtF(\omega) = \int_{-\infty}^{+\infty}f(t)e^{-j\omega t}dt

f(t)=12π+F(ω)ejωtdωf(t) = \frac 1 {2\pi} \int_{-\infty}^{+\infty}F(\omega)e^{j\omega t}d\omega

其中, F(ω)F(\omega) 称为 f(t)f(t)FourierFourier 变换, 记为 F(ω)=F[f(t)]F(\omega) = \mathscr{F}[f(t)], 逆变换记为 f(t)=F1[F(ω)]f(t) = \mathscr{F}^{-1}[F(\omega)].

常见公式

F[1]=2πδ(ω)F[δ(t)]=1F[cosω0t]=π[δ(ω+ω0)+δ(ωω0)]F[sinω0t]=πj[δ(ω+ω0)δ(ωω0)]\begin{array}{ll} \displaystyle \mathscr{F}[1] = 2\pi\delta(\omega) \\\\ \displaystyle \mathscr{F}[\delta(t)] = 1 \\\\ \displaystyle \mathscr{F}[\cos \omega_0 t] = \pi [\delta(\omega + \omega_0) + \delta(\omega - \omega_0)] \\\\ \displaystyle \mathscr{F}[\sin \omega_0 t] = \pi j [\delta(\omega + \omega_0) - \delta(\omega - \omega_0)] \end{array}

性质

线性性质

F[αf1(t)+βf2(t)]=αF1(ω)+βF2(ω)\mathscr{F}[\alpha f_1(t) + \beta f_2(t)] = \alpha F_1(\omega) + \beta F_2(\omega)

F1[αF1(ω)+βF2(ω)]=αf1(t)+βf2(t)\mathscr{F}^{-1}[\alpha F_1(\omega) + \beta F_2(\omega)] = \alpha f_1(t) + \beta f_2(t)

位移性质

F[f(t±t0)]=F(ω)e±jω0t\mathscr{F}[f(t \pm t_0)] = F(\omega) e^{\pm j \omega_0 t}

F1[F(ω±ω0)]=f(t)ejω0t\mathscr{F}^{-1}[F(\omega \pm \omega_0)] = f(t)e^{\mp j \omega_0 t}

卷积性质

F[f1(t)f2(t)]=F1(ω)F2(ω)\mathscr{F}[f_1(t) * f_2(t)] = F_1(\omega) \cdot F_2(\omega)

F[f1(t)f2(t)]=12πF1(ω)F2(ω)\mathscr{F}[f_1(t) \cdot f_2(t)] = \frac1 {2\pi} F_1(\omega) * F_2(\omega)

Parsevel 等式

+[f(t)]2dt=12π+[F(ω)]2dω\int_{-\infty}^{+\infty} \left[ f(t) \right]^2 dt = \frac 1{2\pi} \int_{-\infty}^{+\infty} \left[ F(\omega) \right]^2 d\omega

Laplace 变换

基本概念

f(t)f(t)t0t \geq 0 上有定义, 且积分 0+f(t)estdt\displaystyle \int_0^{+\infty}f(t)e^{-st}dt (ss 是复参数) 关于某一范围内的 ss 收敛, 则由这个积分确定的函数

F(s)=0+f(t)estdtF(s) = \int_0^{+\infty}f(t)e^{-st}dt

称为 f(t)f(t)LaplaceLaplace 变换, 记为 F(s)=L[f(t)]F(s) = \mathscr{L}[f(t)], 逆变换记为 f(t)=L1[F(s)]f(t) = \mathscr{L}^{-1}[F(s)].

常见公式

L[1]=1sL[ekt]=1skL[cosωt]=ss2+ω2L[sinωt]=ωs2+ω2\begin{array}{ll} \displaystyle \mathscr{L}[1] = \frac1 {s} \\\\ \displaystyle \mathscr{L}[e^{kt}] = \frac{1}{s-k} \\\\ \displaystyle \mathscr{L}[\cos \omega t] = \frac{s}{s^2 + \omega^2} \\\\ \displaystyle \mathscr{L}[\sin \omega t] = \frac{\omega}{s^2 + \omega^2} \end{array}

性质

线性性质

L[αf1(t)+βf2(t)]=αF1(s)+βF2(s)\mathscr{L}[\alpha f_1(t) + \beta f_2(t)] = \alpha F_1(s) + \beta F_2(s)

L1[αF1(s)+βF2(s)]=αf1(t)+βf2(t)\mathscr{L}^{-1}[\alpha F_1(s) + \beta F_2(s)] = \alpha f_1(t) + \beta f_2(t)

微分性质

L[f(t)]=sF(s)f(0)\mathscr{L}[f'(t)] = s F(s) - f(0)

L[f(n)(t)]=snF(s)sn1f(0)sn2f(0)f(n1)(0)\mathscr{L}[f^{(n)}(t)] = s^n F(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \cdots - f^{(n-1)}(0)

F(s)=L[tf(t)]F'(s) = -\mathscr{L}[tf(t)]

F(n)(s)=(1)nL[tnf(t)]F^{(n)}(s) = (-1)^n \mathscr{L}[t^n f(t)]

积分性质

L[0tf(t)dt]=1sF(s)\mathscr{L}\left [\int_0^t f(t) dt \right] = \frac 1s F(s)

L[0tdt0tdt0tf(t)dt]=1snF(s)\mathscr{L}\left [\int_0^t dt \int_0^t dt \cdots \int_0^t f(t) dt \right] = \frac 1{s^n} F(s)

s+F(u)du=L[f(t)t]\int_s^{+\infty} F(u) du = \mathscr{L}\left [ \frac{f(t)}{t} \right ]

L[f(t)tn]=s+dss+dss+F(s)ds\mathscr{L}\left[ \frac{f(t)}{t^n} \right] = \int_s^{+\infty} ds \int_s^{+\infty} ds \cdots \int_s^{+\infty} F(s) ds

位移性质

L[eatf(t)]=F(sa)\mathscr{L}[e^{at}f(t)] = F(s-a)

卷积性质

L[f1(t)f2(t)]=F1(s)F2(s)\mathscr{L}[f_1(t) * f_2(t)] = F_1(s) \cdot F_2(s)

L1[F1(s)F2(s)]=f1(t)f2(t)\mathscr{L}^{-1}[F_1(s) \cdot F_2(s)] = f_1(t) * f_2(t)

逆变换

s1,s2,,sns_1, s_2, \cdots, s_n 是函数 F(s)F(s) 的所有孤立奇点(有限个), 除这些奇点外处处解析, 则

f(t)=k=1nRes[F(s)est,sk]f(t) = \sum\limits_{k=1}^{n} \text{Res}[F(s)e^{st}, s_k]

f(t)f(t)F(s)estF(s)e^{st} 的所有留数之和.

Z 变换

基本概念

x(n)x(n) 是无限序列, 则和式

X(z)=n=+x(n)znX(z) = \sum\limits_{n=-\infty}^{+\infty} x(n) z^{-n}

是序列 x(n)x(n)ZZ 变换, 记为 x(z)=Z[x(n)]x(z) = Z[x(n)], 其逆变换为

x(n)=12πjCX(z)zn1dzx(n) = \frac{1}{2\pi j}\oint_C X(z) z^{n-1} dz

记为 x(n)=Z1[X(z)]x(n) = Z^{-1}[X(z)].

常见公式

Z[u(n)]=zz1,z>1Z[αnu(n)]=zzα,z>αZ[nu(n)]=z(z1)2,z>1Z[nαnu(n)]=αz(zα)2,z>1Z[sinαnu(n)]=zsinαz22zcosα+1,z>1Z[cosαnu(n)]=z2zcosαz22zcosα+1,z>1Z[1n!]=e1z,z0\begin{array}{ll} \displaystyle Z[u(n)] = \frac{z}{z - 1} &, |z| > 1 \\\\ \displaystyle Z[\alpha^n u(n)] = \frac{z}{z-\alpha} &, |z| > |\alpha| \\\\ \displaystyle Z[n u(n)] = \frac{z}{(z-1)^2} &, |z| > 1 \\\\ \displaystyle Z[n \alpha^n u(n)] = \frac{\alpha z}{(z - \alpha)^2} &, |z| > 1 \\\\ \displaystyle Z[\sin \alpha n \cdot u(n)] = \frac{z \sin \alpha }{z^2 -2z \cos \alpha +1} &, |z| > 1 \\\\ \displaystyle Z[\cos \alpha n \cdot u(n)] = \frac{z^2-z\cos \alpha}{z^2 - 2 z \cos \alpha + 1} &, |z| > 1 \\\\ \displaystyle Z[\frac 1{n!}] = e^{\frac 1z} &, |z| \neq 0 \end{array}

性质

线性性质

Z[αx1(n)+βx2(n)]=αZ[x1(n)]+βZ[x2(n)]Z[\alpha x_1(n) + \beta x_2(n)] = \alpha Z[x_1(n)] + \beta Z[x_2(n)]

位移性质

Z[x(n±m)]=z±mZ[x(n)]Z[x(n \pm m)] = z^{\pm m} Z[x(n)]

微分性质

Z[nx(n)]=zX(z)Z[nx(n)] = -zX'(z)

相似性质

Z[αnx(n)]=X(zα)Z[\alpha^nx(n)] = X\left( \frac z\alpha \right)

卷积性质

Z[x1(n)x2(n)]=X1(z)X2(z)Z[x_1(n) * x_2(n)] = X_1(z) \cdot X_2(z)

评论