抱歉,您的浏览器无法访问本站
本页面需要浏览器支持(启用)JavaScript
了解详情 >

拉格朗日中值定理

f(b)f(a)ba=f(ξ),ξ(a,b)\frac{f(b)-f(a)}{b-a}=f^{'}(\xi),\xi \in (a,b)

柯西中值定理

f(b)f(a)g(b)g(a)=f(ξ)g(ξ),ξ(a,b)\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{'}(\xi)}{g^{'}(\xi)},\xi \in (a,b)

积分第一中值定理

abf(x)dxba=f(ξ),ξ(a,b)\frac{\int_a^b f(x)dx}{b-a}=f(\xi),\xi \in (a,b)

积分第二中值定理

abf(x)g(x)dxabg(x)dx=f(ξ),ξ(a,b),g(x)不变号\frac{\int_a^b f(x)g(x)dx}{\int_a^b g(x)dx}=f(\xi),\xi \in (a,b),g(x)\text{不变号}

二重积分中值定理

Df(x,y)g(x,y)dxdyDg(x,y)dxdy=f(x0,y0),(x0,y0)D\frac{\iint_D f(x,y)g(x,y)dxdy}{\iint_D g(x,y)dxdy}=f(x_0,y_0),(x_0,y_0)\in D

二重积分中值定理的推广

Df(x,y)g(x,y)dσ=f(x0,y0)SD,(x0,y0)D,SDD的面积\iint_D f(x,y)g(x,y)d\sigma=f(x_0,y_0)S_D,(x_0,y_0)\in D,S_D\text{为}D\text{的面积}

经典例题1

f(x,y)={ex2+y2sinx2+y2x2+y2,x2+y201,x2+y2=0,D:x2+y2t2f(x, y)=\left\{\begin{array}{ll}e^{x^2+y^2} \frac{\sin \sqrt{x^2+y^2}}{\sqrt{x^2+y^2}}&,x^2+y^2 \neq 0\\1&,x^2+y^2=0\end{array}\right.,D:x^2+y^2\leq t^2
limt0+1πt2Df(x,y)dxdy\lim\limits_{t \rightarrow 0^+}\frac{1}{\pi t^2}\iint_D f(x,y)dxdy

解:

因为lim(x,y)(0,0)f(x,y)=limu0+eusinuu=1=f(0,0)\lim\limits_{(x,y)\rightarrow (0,0)}f(x,y)=\lim\limits_{u\rightarrow 0^+}e^u \frac{\sin \sqrt{u}}{\sqrt{u}}=1=f(0,0),

所以f(x,y)f(x,y)(0,0)(0,0)处连续

所以存在(ξ,η)D(\xi ,\eta) \in D, 使得Df(x,y)dxdy=f(ξ,η)SD=f(ξ,η)SD=πt2f(ξ,η)\iint_D f(x,y)dxdy=f(\xi, \eta)S_D =f(\xi,\eta)S_D=\pi t^2 f(\xi,\eta)

所以limt0+1πt2Df(x,y)dxdy=limt0+f(ξ,η)=f(0,0)=1\lim\limits_{t \rightarrow 0^+}\frac{1}{\pi t^2}\iint_D f(x,y)dxdy=\lim\limits_{t \rightarrow 0^+}f(\xi,\eta)=f(0,0)=1

经典例题2

f(x)f(x)[0,1][0,1]上有二阶连续导数,且limx0+f(x)1x2=1\lim\limits_{x \rightarrow 0^+}\frac{f(x)-1}{x^2}=1,D={(x,y)0ytx,0xt}(0<t1)D=\{(x,y)|0 \leq y \leq t-x,0 \leq x \leq t\}(0<t\leq 1),
limt0+Df(x+y)dxdyDf(x,y)dxdy\lim\limits_{t \rightarrow 0^+}\frac{\iint_D f^{}(x+y)dxdy}{\iint_Df(x,y)dxdy}

解:

由洛必达得:f(0)=1f(0)=1,f(0)=2f^{''}(0)=2,区域DD的面积S=12t2S=\frac{1}{2}t^2

所以存在(ξ,η)D(\xi,\eta)\in D,使得Df(x+y)dxdy=12t2f(ξ,η)\iint_Df^{''}(x+y)dxdy=\frac{1}{2}t^2f^{''}(\xi,\eta)

同理存在(μ,λ)D(\mu,\lambda)\in D,使得Df(x+y)dxdy=12t2f(μ,λ)\iint_Df(x+y)dxdy=\frac{1}{2}t^2f(\mu,\lambda)

所以

limt0+Df(x+y)dxdyDf(x+y)dxdy=limt0+12t2f(ξ+η)12t2f(μ+λ)=limt0+12t2f(0)12t2f(0)=2\begin{array}{ll} &\lim\limits_{t \rightarrow 0^+}\frac{\iint_Df^{''}(x+y)dxdy}{\iint_Df(x+y)dxdy} \\ =&\lim\limits_{t \rightarrow 0^+}\frac{\frac{1}{2}t^2f^{''}(\xi + \eta)}{\frac{1}{2}t^2f(\mu + \lambda)} \\ =&\lim\limits_{t \rightarrow 0^+}\frac{\frac{1}{2}t^2f^{''}(0)}{\frac{1}{2}t^2f(0)} \\ =&2 \end{array}

评论